How do you solve 5x^2 - 2x +4 = 05x22x+4=0 by quadratic formula?

1 Answer
Jul 12, 2017

x=(1+isqrt19)/5,x=1+i195,x=(1-isqrt19)/5x=1i195

Explanation:

Solve by quadratic formula:

5x^2-2x+4=05x22x+4=0 is a quadratic equation in standard form: ax^2+bx+cax2+bx+c, where a=5a=5, b=-2b=2, and c=4c=4.

quadratic formula:

x=(-b+-sqrt(b^2-4ac))/(2a)x=b±b24ac2a

Substitute the values for a,b, and ca,b,andc into the formula.

x=(-(-2)+-sqrt((-2)^2-4*5*4))/(2*5)x=(2)±(2)245425

Simplify.

x=(2+-sqrt(4-80))/10x=2±48010

x=(2+-sqrt(-76))/10x=2±7610

Prime factorize the number of the square root.

x=(2+-isqrt(2xx2xx19))/10x=2±i2×2×1910

Simplify.

x=(2+-2isqrt19)/10x=2±2i1910

Reduce.

x=(1+-isqrt19)/5x=1±i195

Solutions for xx.

x=(1+isqrt19)/5,x=1+i195,x=(1-isqrt19)/5x=1i195