How do you solve (7x) /(2x+5) + 1 = (10x - 3) /( 3x)7x2x+5+1=10x33x?

1 Answer
May 10, 2018

x=(29+-sqrt(421))/14x=29±42114

Explanation:

The first thing you do is incorporate the 1 on the left side into the fraction. In order to do that you substitute it by a fraction that is the left denominator divided by itself, like this:

(7x)/(2x+5)+(2x+5)/(2x+5)=(10x-3)/(3x)7x2x+5+2x+52x+5=10x33x

Now we can add the fractions on the left side. Since they have the same denominator, we only add the numerators.

(7x+2x+5)/(2x+5)=(10x-3)/(3x)7x+2x+52x+5=10x33x

(9x+5)/(2x+5)=(10x-3)/(3x)9x+52x+5=10x33x

Now we multiply both sides of the equation to remove the 3x3x from the bottom of the right side.

(3x*(9x+5))/(2x+5)=(10x-3)/cancel(3x)*cancel(3x)

Multiply the top on the left and we get:

(3x*9x+3x*5)/(2x+5)=10x-3

(27x^2+15x)/(2x+5)=(10x-3)

Do the same thing with the left denominator. Multiply both sides by it in order to remove it.

cancel(2x+5)(27x^2+15x)/cancel(2x+5)=(10x-3)*(2x+5)

Now we multiply out the right side:

27x^2+15x=(10x-3)(2x+5)

27x^2+15x=20x^2+50x-6x-15

27x^2+15x=20x^2+44x-15

Finally we can move everything from the right side of the equation to the left:

27x^2+15x-20x^2-44x+15=0

7x^2-29x+15=0

Now we have a single equation if the form of ax^2+bx+c=0

Which means we can use the quadratic formula x=(-b+-sqrt(b^2-4ac))/(2a) to solve for x

When we plug in the numbers, we get:

x=(29+-sqrt((-29)^2-4*7*15))/(2*7)

x=(29+-sqrt(841-420))/14

x=(29+-sqrt(421))/14