How do you solve \frac { - 2x } { 3} = \frac { - 5} { 2} + \frac { - x + 1} { 3}?

3 Answers
Mar 3, 2017

I gor x=13/2

Explanation:

I would first take a common denominator such as 6 and change the numerator accordingly to get:
(2*(-2x))/6=(3*(-5)+2(-x+1))/6
get rid of the denominators:
(2*(-2x))/cancel(6)=(3*(-5)+2(-x+1))/cancel(6)
rearrange and solve for x:
-4x=-15-2x+2
2x=13
x=13/2

Mar 3, 2017

x=6 1/2

Explanation:

(-2x)/3=-5/2+(-x+1)/3

:.(-4x=-15+2(-x+1))/6

:.-4x=-15-2x+2

:.-4x+2x=-15+2

:.-2x=-13

:.-x=-13/2

multiply L.H.S and R.H.S. bycolor(red)-color(red)1

:.color(red)xcolor(red)=color(red)13/color(red)2

:.color(red)xcolor(red)=color(red)6color(red) 1/color(red)2

substitute color(red)xcolor(red)=color(red)(13)/color(red)2

:.(-2(color(red)13/color(red)2))/3=-5/2+(-(color(red)13/color(red)2)+1)/3

:.(-26/2)/3=-5/2+((color(red)-color(red)13/color(red)2)+1)/3

:.-cancel26^13/cancel2^1 xx 1/3=-5/2+(-6 1/2+1)/3

:.-13/3=-5/2+(-5 1/2)/3

:.-13/3=-5/2+((-11/2)/3)

:.-13/3=- 5/2+(-11/2 xx 1/3)

:.-13/3=-5/2-11/6

:.-13/3=(-15-11)/6

:.- 13/3=-cancel26^13/cancel6^3
:.-13/3=-13/3

Mar 3, 2017

x = 13/2

Explanation:

(-2x)/3 = (-5)/2 +(-x+1)/3

When you have an equation with fractions you can get rid of the denominators by multiplying each term by the LCM of the denominators. In this case it is 6

(-2x xxcolor(blue)(6))/3 = (-5xxcolor(blue)(6))/2 +(color(blue)(6xx)(-x+1))/3

cancel the denominators

(-2x xxcolor(blue)(cancel6^2))/cancel3 = (-5xxcolor(blue)(cancel6^3))/cancel2 +(color(blue)(cancel6^2)(-x+1))/cancel3

-4x=-15 +2(-x+1)

-4x=-15-2x+2

15-2 = 4x-2x

13=2x

x= 13/2