How do you solve \frac { 2x } { 5} - \frac { x + 18} { 6} = 23+ \frac { x } { 30}?

2 Answers
Dec 22, 2016

x = 130

Explanation:

Rearrange the equation. all x's on one side.

(2x)/5 - (x + 18 )/6 -x/30 = 23

Equalize the denominators to 30

(2x)/5 * 6/6 - (x + 18 )/6 * 5/5 -x/30 = 23

(12x) / 30 - (5(x + 18)) / 30 - x/30 = 23

( 12x -5x -90 -x ) / 30 =23

Multiply both sides by 30

12x - 5x -90 -x = 690

6x = 690 + 90

6x = 780

x = 780 / 6

x =130

Dec 23, 2016

x = 130

Explanation:

(2x)/5 - (x+18)/6 = 23 + x/30

When you have an equation which has fractions in it, you can get rid of the fractions immediately.

Multiply each term by the LCM of the denominators and cancel.

In this case the LCM = color(blue)(30

(color(blue)(30 xx)2x)/5 - (color(blue)(30 xx)(x+18))/6 = color(blue)(30 xx)23 + (color(blue)(30 xx)x)/30

Now cancel all the denominators:

(color(blue)(cancel30^6 xx)2x)/cancel5 - (color(blue)(cancel30^5 xx)(x+18))/cancel6 = color(blue)(30 xx)23 + (color(blue)(cancel30 xx)x)/cancel30

6 xx2x-5(x+18)= 30xx23 +x" "larr no fractions!! Simplify

12x-5x-90 = 690+x" "larr now solve the equation

12x-5x-x = 690+90" "larr re-arrange the terms

6x = 780" "larr div 6 on both sides

x = 130