How do you solve rational equations ((x^2)/(x^2-4)) = ((x)/(x 2)) - ((2x)/(2-x))?

1 Answer
Dec 29, 2015

x^2/(x^2-4)=x/x^2-(2x)/(2-x)

implies x^2/((x-2)(x+2))=x/x^2+(2x)/(x-2)

Here we can see that L.C.M is x(x-2)(x+2)
Multiply both sides by L.C.M i.e. by x(x-2)(x+2)

implies (x(x-2)(x+2)x^2)/((x-2)(x+2))=(x(x-2)(x+2)x)/x^2+(x(x-2)(x+2)2x)/(x-2)

implies x^3=(x-2)(x+2)+2x^2(x+2)
implies x^3=x^2-4+2x^3+4x^2
implies x^3 +5x^2-4=0
implies x^3+x^2+4x^2+4x-4x-4=0
implies x^2(x+1)+4x(x+1)-4(x+1)=0
implies (x+1)(x^2+4x-4)=0
implies either x+1=0 or x^2+4x-4=0

implies x=-1 or x=(-4+-sqrt(4^2-4*1(-4)))/(2*1)

implies x=-1 or x=(-4+-sqrt(16+16))/2

implies x=-1 or x=(-4+-4sqrt(1+1))/2

implies x=-1 or x=(2(-2+-2sqrt(1+1)))/2

implies x=-1 or x=-2+-2sqrt(2)

Hence x can have three values which are x=-1, -2+2sqrt2, -2-2sqrt2