How do you solve: sqrt(2x+5) - sqrt(x-2) = 3?

1 Answer
Apr 25, 2015

sqrt(2x+5) - sqrt(x-2)=3

  1. First isolate one of the square roots:
    sqrt(2x+5)=3+sqrt(x-2)

  2. Then square each side:
    (sqrt(2x+5))^2=(3+sqrt(x-2))(3+sqrt(x-2))
    2x+5=9+6sqrt(x-2)+(x-2)

  3. Simplify the equations leaving the square root on one sided:
    x-2=6sqrt(x-2)

  4. Square each side:
    (x-2)(x-2)=36(x-2)

  5. Divide each side by (x-2):
    x-2=36
    so x=38

All ways check you answer in the original problem:
sqrt(2x+5) - sqrt(x-2)=3
sqrt(2(38)+5) - sqrt(38-2)=3
sqrt(81) - sqrt(36)=3
9-6=3
3=3