How do you solve sqrt (3x + 4) + x = 8?

2 Answers
Mar 23, 2018

color(blue)(x=16)

color(blue)(x=4)

Explanation:

sqrt(3x+4)+x=8

Subtract x from both sides:

sqrt(3x+4)=8-x

Square both sides:

3x+4=(8-x)^2

Expand the bracket:

3x+4=64-16x+x^2

Collect like terms:

x^2-19x+60=0

Factor:

x^2-15x-4x+60

x(x-15)-4(x-15)

(x-15){x-4}

(x-16)(x-4)=0

x-16=0=>color(blue)(x=16)

x-4=0=>color(blue)(x=4)

Mar 23, 2018

Solution: x=4 , x=15

Explanation:

sqrt(3x+4)+x =8 or sqrt(3x+4) =8-x Squaring both sides

we get, 3x+4 = (8-x)^2 or 3x+4 = x^2-16x+64 or

x^2-16x+64-3x-4=0 or x^2-19x+60=0 or

x^2-15x-4x+60=0 or

x(x-15)-4(x-15)=0 or (x-15)(x-4)=0 :.

Either x-15=0 :. x=15 , or x-4=0 :. x=4

Check : sqrt(3*4+4)+4 =8 or sqrt16+4=8or 8=8

sqrt(3*15+4)+15 =8 or sqrt49+15=8 or -7+15=8

Solution: x=4 , x=15 [Ans]