How do you solve sqrt(x+3)-sqrt(x-1)=1?

2 Answers
Apr 19, 2015

the answer is x=13/4

First, let's call a=sqrt(x+3) and b=sqrt(x-1)

Now use the rule (a+b)(a-b)=a^2-b^2
so 4=a^2-b^2=a+b

So we have a+b=4 and a-b=1

We sum and subtract respectively the two equations and we have

2a=5
2b=3

So sqrt(x+3)=5/2 => x = +-25/4 - 3 =>x \in {13/4,-37/4}
And sqrt(x-1)=3/2 => x= +- 9/4 + 1 => x \in {13/4,-5/4}

so x=13/4

Apr 19, 2015

Firstly know that:

sqrt(a)sqrt(b)=sqrt(ab)

And also that:

sqrt(q)sqrt(q)=q

Knowing this, let's find the value of x...

sqrt(x+3)-sqrt(x-1)=1

(sqrt(x+3)-sqrt(x-1))^2=1^2

(sqrt(x+3)-sqrt(x-1))(sqrt(x+3)-sqrt(x-1))=1

x+3-sqrt(x+3)sqrt(x-1)-sqrt(x+3)sqrt(x-1)+(x-1)=1

x+3-2sqrt(x+3)sqrt(x-1)+x-1=1

2x+2-2sqrt(x+3)sqrt(x-1)=1

2(x+1-sqrt(x+3)sqrt(x-1))=1

x+1-sqrt(x+3)sqrt(x-1)=1/2

x+1-1/2=sqrt((x+3)(x-1))

x+1/2=sqrt((x+3)(x-1))

(x+1/2)^2=(x+3)(x-1)

x^2+1/2x+1/2x+1/4=x^2-x+3x-3

x^2+x+1/4=x^2+2x-3

x^2-x^2+1/4+3=2x-x

:. x=3+1/4