How do you solve sqrt(x + 6) + sqrt(2-x) = 4?

1 Answer
Oct 7, 2015

I found x=-2

Explanation:

Let us try squaring both sides:

[sqrt(x+6)+sqrt(2-x)]^2=4^2

cancel(x)+6+2sqrt(x+6)sqrt(2-x)+2cancel(-x)=16

8+2sqrt((x+6)(2-x))=16 taking 8 to the right:

2sqrt((x+6)(2-x))=8 taking 2 to the right (dividing):

sqrt((x+6)(2-x))=4

let us square again:

(x+6)(2-x)=16

2x-x^2+12-6x-16=0

-x^2-4x-4=0 using the Quadratic Formula we get:

x_(1,2)=(4+-sqrt(16-4(-4*-1)))/-2=(4+-sqrt(0))/-2=-2

Let us try this solution into our original equation as x:
sqrt(-2+6)+sqrt(2+2)=2+2=4 Yes.