How do you solve the equation (x/(x-1)) + (x/3) = (5/(x-1))?

1 Answer
Mar 13, 2018

x = 2.594 or 1.927

Explanation:

x/(x-1) + x/3 = 5/(x-1)

We need a common denominator of (x-1) xx 3

3/3 xx x/(x-1) + (x-1)/(x-1) xx x/3 = 5/(x-1) xx 3/3

(3x)/(3x-3) + (x^2-x)/(3x-3) = 15/(3x-3)

(3x^2+3x - x)/(3x-3) = 15/(3x-3)

3x^2 + 2x = 15

3x^2 + 2x - 15 = 0

Let's use the quadratic formula

color(green)(a) = color(green)(3)
color(blue)(b) = color(blue)(2)
color(orange)(c) = color(orange)(-15)

-color(blue)(b) /(2 xx color(green)(a) ) +- sqrt( color(blue)(b)^2 - 4 xx color(green)(a) xx color(orange)(c))/(2 xx color(green)(a) )

-color(blue)(2) /(2 xx color(green)(3) ) +- sqrt( color(blue)(2)^2 - 4 xx color(green)(3) xx color(orange)(15))/(2 xx color(green)(3) )

-1/3 +- sqrt(4+180)/6

1/3 +- sqrt(184)/6

Let's simplify the Square Root

184 = 2 xx 2 xx 2 xx 23 = 2^2 xx 46

sqrt(184) = sqrt(2^2) xx sqrt(46) = 2 xx sqrt(46)

-1/3 +- (2sqrt(46))/6

-1/3 +- sqrt(46)/3

So x = 2.594 or 1.927