How do you solve using the quadratic formula 3x^2 + 6x = 123x2+6x=12?

1 Answer
Mar 14, 2018

-1 +- sqrt51±5

Explanation:

First get the 12 to the other side.
3x^2+6x-12=03x2+6x12=0

Quadratic Formula is
(-b +- sqrt(b^2-4ac))/"2a"b±b24ac2a

where
a=3
b=6
c=-12

Now we just plug it in
(-(6)+-sqrt(6^2-4(3)(-12)))/"2(3)"(6)±624(3)(12)2(3)

You can split this up like so
-6/"2(3)" +-sqrt(6^2-4(3)(-12))/"2(3)"62(3)±624(3)(12)2(3)

Then get this
-6/"6" +- sqrt(36-(-144))/"6"66±36(144)6

Simplify
-1 +- sqrt(180)/"6"1±1806

Then we simplify the square-root like so,
sqrt(36)*sqrt(5)=sqrt(180)365=180

Thus
6sqrt(5)=sqrt(180)65=180

-1 +-(6sqrt(5))/"6"1±656

Which simplifies to
-1 +-sqrt(5)1±5