How do you solve using the quadratic formula for 4x^2+12x+5=1174x2+12x+5=117?

1 Answer
May 31, 2015

First subtract 117 from both sides to get:

4x^2+12x-112 = 04x2+12x112=0

Notice all the terms are divisible by 44, so divide both sides by 44 to get:

x^2+3x-28 = 0x2+3x28=0

This is in the form ax^2+bx+c = 0ax2+bx+c=0 with a=1a=1, b=3b=3, c=-28c=28

Then

x = (-b +-sqrt(b^2-4ac))/(2a)x=b±b24ac2a

=(-3+-sqrt(3^2-(4xx1xx-28)))/(2xx1)=3±32(4×1×28)2×1

=(-3+-sqrt(9+112))/2=3±9+1122

=(-3+-sqrt(121))/2=3±1212

=(-3+-sqrt(11^2))/2=3±1122

=(-3+-11)/2=3±112

That is x = -7x=7 or x = 4x=4