color(blue)(x^2+2x-7x2+2x−7
This equation is a Quadratic equation (in form ax^2+bx+c=0ax2+bx+c=0)
Use the Quadratic formula:
color(brown)(x=(-b+-sqrt(b^2-4ac))/(2a)x=−b±√b2−4ac2a
In this case color(red)(a=1,b=2,c=-7a=1,b=2,c=−7
Substitute the values:
rarrx=color(orange)((-2+-sqrt(2^2-4(1)(-7)))/(2(1))→x=−2±√22−4(1)(−7)2(1)
rarrx=color(orange)((-2+-sqrt(4-(-28)))/(2)→x=−2±√4−(−28)2
rarrx=color(orange)((-2+-sqrt(4+28))/2→x=−2±√4+282
rarrx=color(orange)((-2+-sqrt32)/2→x=−2±√322
rarrx=color(orange)((-2+-sqrt(16*2))/2→x=−2±√16⋅22
rarrx=color(orange)((-2+-4sqrt2)/2→x=−2±4√22
rarrx=color(orange)(-2/2+-(4sqrt2)/2→x=−22±4√22
rarrx=color(orange)(-cancel(2)/cancel(2)+-(cancel4sqrt2)/cancel2
rArrcolor(green)(x=-1+-2sqrt2