How do you solve x^2 + 2x-7=0x2+2x7=0 using the quadratic formula?

1 Answer
Feb 14, 2016

color(green)(x=-1+-2sqrt2x=1±22

Explanation:

color(blue)(x^2+2x-7x2+2x7

This equation is a Quadratic equation (in form ax^2+bx+c=0ax2+bx+c=0)

Use the Quadratic formula:

color(brown)(x=(-b+-sqrt(b^2-4ac))/(2a)x=b±b24ac2a

In this case color(red)(a=1,b=2,c=-7a=1,b=2,c=7

Substitute the values:

rarrx=color(orange)((-2+-sqrt(2^2-4(1)(-7)))/(2(1))x=2±224(1)(7)2(1)

rarrx=color(orange)((-2+-sqrt(4-(-28)))/(2)x=2±4(28)2

rarrx=color(orange)((-2+-sqrt(4+28))/2x=2±4+282

rarrx=color(orange)((-2+-sqrt32)/2x=2±322

rarrx=color(orange)((-2+-sqrt(16*2))/2x=2±1622

rarrx=color(orange)((-2+-4sqrt2)/2x=2±422

rarrx=color(orange)(-2/2+-(4sqrt2)/2x=22±422

rarrx=color(orange)(-cancel(2)/cancel(2)+-(cancel4sqrt2)/cancel2

rArrcolor(green)(x=-1+-2sqrt2