How do you solve x^2 - 3x = 40 x23x=40 by quadratic formula?

1 Answer
Jan 13, 2016

The solutions are
color(blue)(x=8 , x=-5x=8,x=5

Explanation:

x^2 -3x - 40=0x23x40=0

The equation is of the form color(blue)(ax^2+bx+c=0ax2+bx+c=0 where:
a=1, b=-3, c=-40a=1,b=3,c=40

The Discriminant is given by:
Delta=b^2-4*a*c

= (-3)^2-(4*1*(-40))

= 9 +160=169

The solutions are found using the formula
x=(-b+-sqrtDelta)/(2*a)

x = (-(-3)+-sqrt(169))/(2*1) = (3 +-13)/2

x= (3 +13)/2 = 16/2 = color(blue)(8

x= (3 -13)/2 = -10/2 = color(blue)(-5