How do you solve x^2+4x+2=0 using the quadratic formula?

1 Answer
Mar 4, 2018

See a solution process below:

Explanation:

The quadratic formula states:

For color(red)(a)x^2 + color(blue)(b)x + color(green)(c) = 0, the values of x which are the solutions to the equation are given by:

x = (-color(blue)(b) +- sqrt(color(blue)(b)^2 - (4color(red)(a)color(green)(c))))/(2 * color(red)(a))

For: 1x^2 + 4x + 2 = 0

We can substitute:

color(red)(1) for color(red)(a)

color(blue)(4) for color(blue)(b)

color(green)(2) for color(green)(c) giving:

x = (-color(blue)(4) +- sqrt(color(blue)(4)^2 - (4 xx color(red)(1) xx color(green)(2))))/(2 * color(red)(1))

x = (-color(blue)(4) +- sqrt(16 - 8))/2

x = (-color(blue)(4) - sqrt(8))/2 and x = (-color(blue)(4) + sqrt(8))/2

x = -color(blue)(4)/2 - sqrt(8)/2 and x = -color(blue)(4)/2 + sqrt(8)/2

x = -2 - sqrt(8)/2 and x = -2 + sqrt(8)/2

x = -2 - sqrt(4 xx 2)/2 and x = -2 + sqrt(4 xx 2)/2

x = -2 - (sqrt(4)sqrt(2))/2 and x = -2 + (sqrt(4)sqrt(2))/2

x = -2 - (2sqrt(2))/2 and x = -2 + (2sqrt(2))/2

x = -2 - sqrt(2) and x = -2 + sqrt(2)