How do you solve x^2+4x-3=0 using the quadratic formula?
1 Answer
Use the quadratic formula to find:
x = -2+-sqrt(7)
Explanation:
This has roots given by the quadratic formula:
x = (-b+-sqrt(b^2-4ac))/(2a)
=(-4+-sqrt(4^2-(4*1*(-3))))/(2*1)
=(-4+-sqrt(16+12))/2
=(-4+-sqrt(28))/2
=(-4+-sqrt(2^2*7))/2
=(-4+-2sqrt(7))/2
=-2+-sqrt(7)
Using the quadratic formula is similar in some ways to completing the square:
0 = x^2+4x-3
=x^2+4x+4-7
=(x+2)^2-(sqrt(7))^2
=((x+2)-sqrt(7))((x+2)+sqrt(7))
=(x+2-sqrt(7))(x+2+sqrt(7))
Hence
In fact, we can derive the quadratic formula as follows:
Given
0 = ax^2+bx+c
=a(x+b/(2a))^2+(c-b^2/(4a))
Hence:
a(x+b/(2a))^2 = b^2/(4a) - c = (b^2-4ac)/(4a)
Divide both sides by
(x+b/(2a))^2 = (b^2-4ac)/(2a)^2
Hence:
x + b/(2a) = +-sqrt(b^2-4ac)/(2a)
So:
x = (-b+-sqrt(b^2-4ac))/(2a)