How do you solve x^2+4x-3=0 using the quadratic formula?

1 Answer
Apr 19, 2016

Use the quadratic formula to find:

x = -2+-sqrt(7)

Explanation:

x^2+4x-3=0 is of the form ax^2+bx+c=0, with a=1, b=4 and c=-3.

This has roots given by the quadratic formula:

x = (-b+-sqrt(b^2-4ac))/(2a)

=(-4+-sqrt(4^2-(4*1*(-3))))/(2*1)

=(-4+-sqrt(16+12))/2

=(-4+-sqrt(28))/2

=(-4+-sqrt(2^2*7))/2

=(-4+-2sqrt(7))/2

=-2+-sqrt(7)

color(white)()
Using the quadratic formula is similar in some ways to completing the square:

0 = x^2+4x-3

=x^2+4x+4-7

=(x+2)^2-(sqrt(7))^2

=((x+2)-sqrt(7))((x+2)+sqrt(7))

=(x+2-sqrt(7))(x+2+sqrt(7))

Hence x = -2+-sqrt(7)

color(white)()
In fact, we can derive the quadratic formula as follows:

Given ax^2+bx+c = 0

0 = ax^2+bx+c

=a(x+b/(2a))^2+(c-b^2/(4a))

Hence:

a(x+b/(2a))^2 = b^2/(4a) - c = (b^2-4ac)/(4a)

Divide both sides by a to get:

(x+b/(2a))^2 = (b^2-4ac)/(2a)^2

Hence:

x + b/(2a) = +-sqrt(b^2-4ac)/(2a)

So:

x = (-b+-sqrt(b^2-4ac))/(2a)