How do you solve x^2 + 8x = 24x2+8x=24 using the quadratic formula?

1 Answer
Sep 11, 2016

x = - 4 pm 2 sqrt(10)x=4±210

Explanation:

We have: x^(2) + 8 x = 24x2+8x=24

First, let's subtract 2424 from both sides of the equation:

=> x^(2) + 8 x - 24 = 0x2+8x24=0

Then, let's apply the quadratic formula:

=> x = (- 8 pm sqrt(8^(2) - 4 (1) (- 24))) / (2 (1))x=8±824(1)(24)2(1)

=> x = (- 8 pm sqrt(64 + 96)) / (2)x=8±64+962

=> x = (- 8 pm sqrt(160)) / (2)x=8±1602

=> x = (- 8 pm 4 sqrt(10)) / (2)x=8±4102

=> x = - 4 pm 2 sqrt(10)x=4±210

Therefore, the solutions to the equation are x = - 4 - 2 sqrt(10)x=4210 and x = - 4 + 2 sqrt(10)x=4+210.