How do you solve (x-2)/(x-3)+(x-3)/(x-2)=(2x^2)/(x^2-5x+6)x2x3+x3x2=2x2x25x+6?

1 Answer
Nov 23, 2016

x = 13/10x=1310

Explanation:

First, you must get each fraction over a common denominator which is x^2 - 5x + 6x25x+6:

(x - 2)/(x - 2) (x - 2)/(x - 3) + (x - 3)/(x - 3) (x - 3)/(x - 2) = (2x^2)/(x^2 - 5x + 6)x2x2x2x3+x3x3x3x2=2x2x25x+6

(x^2 - 4x + 4)/(x^2 - 5x + 6) + (x^2 - 6x + 9)/(x^2 - 5x + 6) = (2x^2)/(x^2 - 5x + 6)x24x+4x25x+6+x26x+9x25x+6=2x2x25x+6

Next, add the fractions on the left side of the equation:

((x^2 - 4x + 4) + (x^2 - 6x + 9))/(x^2 - 5x + 6) = (2x^2)/(x^2 - 5x + 6)(x24x+4)+(x26x+9)x25x+6=2x2x25x+6

(2x^2 - 10x + 13)/(x^2 - 5x + 6) = (2x^2)/(x^2 - 5x + 6)2x210x+13x25x+6=2x2x25x+6

We can now multiply each side of the equation by x^2 - 5x + 6x25x+6 to eliminate the fraction:

(x^2 - 5x + 6) (2x^2 - 10x + 13)/(x^2 - 5x + 6) = (x^2 - 5x + 6) (2x^2)/(x^2 - 5x + 6)(x25x+6)2x210x+13x25x+6=(x25x+6)2x2x25x+6

cancel((x^2 - 5x + 6)) (2x^2 - 10x + 13)/cancel((x^2 - 5x + 6)) = cancel((x^2 - 5x + 6)) (2x^2)/cancel((x^2 - 5x + 6))

2x^2 - 10x + 13 = 2x^2

We can now solve for x:

2x^2 - 10x + 13 - 2x^2= 2x^2 - 2x^2

-10x + 13 = 0

-10x + 13 - 13 = 0 - 13

-10x = -13

(-10x)/-10 = (-13)/(-10)

x = 13/10