First, you must get each fraction over a common denominator which is x^2 - 5x + 6x2−5x+6:
(x - 2)/(x - 2) (x - 2)/(x - 3) + (x - 3)/(x - 3) (x - 3)/(x - 2) = (2x^2)/(x^2 - 5x + 6)x−2x−2x−2x−3+x−3x−3x−3x−2=2x2x2−5x+6
(x^2 - 4x + 4)/(x^2 - 5x + 6) + (x^2 - 6x + 9)/(x^2 - 5x + 6) = (2x^2)/(x^2 - 5x + 6)x2−4x+4x2−5x+6+x2−6x+9x2−5x+6=2x2x2−5x+6
Next, add the fractions on the left side of the equation:
((x^2 - 4x + 4) + (x^2 - 6x + 9))/(x^2 - 5x + 6) = (2x^2)/(x^2 - 5x + 6)(x2−4x+4)+(x2−6x+9)x2−5x+6=2x2x2−5x+6
(2x^2 - 10x + 13)/(x^2 - 5x + 6) = (2x^2)/(x^2 - 5x + 6)2x2−10x+13x2−5x+6=2x2x2−5x+6
We can now multiply each side of the equation by x^2 - 5x + 6x2−5x+6 to eliminate the fraction:
(x^2 - 5x + 6) (2x^2 - 10x + 13)/(x^2 - 5x + 6) = (x^2 - 5x + 6) (2x^2)/(x^2 - 5x + 6)(x2−5x+6)2x2−10x+13x2−5x+6=(x2−5x+6)2x2x2−5x+6
cancel((x^2 - 5x + 6)) (2x^2 - 10x + 13)/cancel((x^2 - 5x + 6)) = cancel((x^2 - 5x + 6)) (2x^2)/cancel((x^2 - 5x + 6))
2x^2 - 10x + 13 = 2x^2
We can now solve for x:
2x^2 - 10x + 13 - 2x^2= 2x^2 - 2x^2
-10x + 13 = 0
-10x + 13 - 13 = 0 - 13
-10x = -13
(-10x)/-10 = (-13)/(-10)
x = 13/10