How do you solve x+3=sqrt(2x^2-7) and identify any restrictions?

1 Answer
Jun 3, 2018

Range restriction: x>=+-sqrt(14)/2 ~~1.87

Solutions (roots): x=-2 and x=8

Explanation:

x+3=sqrt(2x^2-7)

First let's look at the restrictions, the value within the radical cannot be negative or the solution is imaginary:

2x^2-7>=0

x^2>=7/2

x>=+-sqrt(7/2)

x>=+-sqrt(14)/2 ~~1.87

Now solve:

x+3=sqrt(2x^2-7)

(x+3)^2=(sqrt(2x^2-7))^2

x^2 +6x+9=2x^2-7

0=x^2-6x-16

(x+2)(x-8)=0

x=-2 and x=8