How do you solve [ x/(x+1)] = [1/3] + [(x+2)/(4x)][xx+1]=[13]+[x+24x]?

1 Answer
Feb 18, 2016

x=3x=3 or x= -2/5x=25

Explanation:

first of all equalize all the denominators as if you're doing a standard fraction addition/subtraction

the right-hand side
x/(x+1)= (4x*1/(3*4x))+(3*(x+2))/(3*4x))xx+1=(4x134x)+3(x+2)34x)

x/(x+1)=(4x+3x+6)/(12x)xx+1=4x+3x+612x

x/(x+1)=(7x+6)/(12x)xx+1=7x+612x

x/(x+1)-(7x+6)/(12x)=0xx+17x+612x=0

Now the left-hand side

((x*12x)/(12x*(x+1)))-((x+1)*(7x+6))/((x+1)*12x)=0(x12x12x(x+1))(x+1)(7x+6)(x+1)12x=0

(12x^2-(7x^2+6x+7x+6))/(12x*(x+1))=012x2(7x2+6x+7x+6)12x(x+1)=0

(12x^2-(7x^2+13x+6))/(12x*(x+1))=012x2(7x2+13x+6)12x(x+1)=0

(12x^2-7x^2-13x-6)/(12x*(x+1))=012x27x213x612x(x+1)=0

(5x^2-13x-6)/(12x*(x+1))=05x213x612x(x+1)=0

the nominator of this fractional equation should be 0 for the expression to yield 0.
So solve for x in:

(5x^2-13x-6)=0(5x213x6)=0

Use the quadratic formula (or factorize the expression)

x=-2/5x=25 or x= 3x=3

Feel free to ask questions if you have any