How do you solve y = 0.04x+ 8.3x + 4.3y=0.04x+8.3x+4.3 using the quadratic formula?

1 Answer
Nov 7, 2017

See a solution process below:

Explanation:

Assuming the equation is:

y = 0.04x^color(red)(2) + 8.3x + 4.3y=0.04x2+8.3x+4.3

The quadratic formula states:

For color(red)(a)x^2 + color(blue)(b)x + color(green)(c) = 0ax2+bx+c=0, the values of xx which are the solutions to the equation are given by:

x = (-color(blue)(b) +- sqrt(color(blue)(b)^2 - (4color(red)(a)color(green)(c))))/(2 * color(red)(a))x=b±b2(4ac)2a

Substituting:

color(red)(0.04)0.04 for color(red)(a)a

color(blue)(8.3)8.3 for color(blue)(b)b

color(green)(4.3)4.3 for color(green)(c)c gives:

x = (-color(blue)(8.3) +- sqrt(color(blue)(8.3)^2 - (4 * color(red)(0.04) * color(green)(4.3))))/(2 * color(red)(0.04))x=8.3±8.32(40.044.3)20.04

x = (-color(blue)(8.3) +- sqrt(68.89 - 0.688))/0.08x=8.3±68.890.6880.08

x = (-8.3 +- sqrt(68.202))/0.08x=8.3±68.2020.08

If it is necessary to get to a single number:

x = (-8.3 - 8.258)/0.08x=8.38.2580.08 and x = (-8.3 + 8.258)/0.08x=8.3+8.2580.08

x = -16.558/0.08x=16.5580.08 and x = -0.042/0.08x=0.0420.08

x = -206.975x=206.975 and x = --0.525x=0.525

rounded to the nearest thousandth