How do you use a half-angle formula to simplify tan ((7pi)/8)?

1 Answer
Jun 30, 2015

Simplify tan ((7pi)/8)

Explanation:

Call tan ((7pi)/8) = t
Use trig identity: tan 2a = (2tan a)/(1 - tan^2 a)

tan ((14pi)/8) = (2t)/(1 - t^2)

Since tan ((14pi)/8) = tan ((6pi)/8 + pi) = tan ((3pi)/4 + pi) =

= - tan ((3pi)/4) = -1

Therefor, (2t)/(1 - t^2) = -1 -> t^2 - 2t - 1 = 0
Solve this quadratic equation.
D = d^2 = b^2 - 4ac = 4 + 4 = 8 -> d = +- 2sqrt2
t = 1 +- sqrt2

t = tan ((7pi)/8) = 1 - sqrt2 (Quadrant II)