How do you use double angle formula to determine cos 120? Trigonometry Trigonometric Identities and Equations Double Angle Identities 1 Answer Alan P. Jun 5, 2015 Double Angle formula for Cosine (one version): color(white)("XXXX")XXXXcos(2x) = 2cos^2(x)-1cos(2x)=2cos2(x)−1 cos(120^@)cos(120∘) color(white)("XXXX")XXXX=cos(2*60^@)=cos(2⋅60∘) color(white)("XXXX")XXXX= 2* cos^2(60^@) -1=2⋅cos2(60∘)−1 color(white)("XXXX")XXXX= 2 * (1/2)^2 -1=2⋅(12)2−1 color(white)("XXXX")XXXX = -1/2=−12 Answer link Related questions What are Double Angle Identities? How do you use a double angle identity to find the exact value of each expression? How do you use a double-angle identity to find the exact value of sin 120°? How do you use double angle identities to solve equations? How do you find all solutions for sin 2x = cos xsin2x=cosx for the interval [0,2pi][0,2π]? How do you find all solutions for 4sinthetacostheta=sqrt(3)4sinθcosθ=√3 for the interval [0,2pi][0,2π]? How do you simplify cosx(2sinx + cosx)-sin^2xcosx(2sinx+cosx)−sin2x? If tan x = 0.3tanx=0.3, then how do you find tan 2x? If sin x= 5/3sinx=53, what is the sin 2x equal to? How do you prove cos2A = 2cos^2 A - 1cos2A=2cos2A−1? See all questions in Double Angle Identities Impact of this question 7265 views around the world You can reuse this answer Creative Commons License