How do you use half angle formula to find sin 165?

1 Answer
Jun 2, 2018

sin 165 = sqrt( 2 - sqrt3)/2

Explanation:

Use half angle identity:
sin t = +- sqrt((1 - cos 2t)/2)
2sin^2 t = (1 - cos 2t)
In this case:
cos 2t = cos 330 = cos (- 30 + 360) = cos (-30) = cos 30 = sqrt3/2.
Hence,
2sin^2 165 = 1 - sqrt3/2 = (2 - sqrt3)/2
sin^2 165 = (2 - sqrt3)/4
sin 165 = +- sqrt(2 - sqrt3)/2
Since sin 165 is positive, then,
sin 165 = sqrt(2 - sqrt3)/2