How do you use limits to find a horizontal asymptote?

1 Answer
Mar 17, 2018

Please see below.

Explanation:

We find limit of the function f(x) as x->oo i.e. y=lim_(x->oo)f(x). An example is shown below.

Let the function be f(x)=(ax^3+bx^2+cx+d)/(px^3+qx^2+rx+s),

then lim_(x->oo)(ax^3+bx^2+cx+d)/(px^3+qx^2+rx+s).

Now dividing numerator and denominator by x^3, we get

lim_(x->oo)(a+b/x+c/x^2+d/x^3)/(p+q/x+r/x^2+s/x^3)

= a/p

and hence horizontal asymptote is y=a/p