How do you use the double angle formula to rewrite 5-10sin^2x510sin2x?

1 Answer
Apr 26, 2015

Think about (list) double angle formulas until you come to one that looks useful.

sin(2 theta) = 2sin theta cos thetasin(2θ)=2sinθcosθ Doesn't look helpful

cos(2 theta) = cos^2 theta - sin^2 thetacos(2θ)=cos2θsin2θ -- Hmmmm, probably not but there are other forms for this one

cos(2 theta) = 1 - 2sin^2 thetacos(2θ)=12sin2θ. Compare this to what we started with.

If I factored out a 5, I'd have:

5-10sin^2x = 5(1-2sin^2x)510sin2x=5(12sin2x) and that's just

5cos(2x)5cos(2x)

So there it is.

5-10sin^2x = 5cos(2x)510sin2x=5cos(2x)