How do you use the quadratic formula to solve 2(x-3)^2=-2x+9?

1 Answer
May 14, 2017

x = 5/2 +- 1/2sqrt(7)

Explanation:

We can use the quadratic formula:

x = (-b +- sqrt(b^2-4ac))/(2a)

to solve a quadratic equation of the form:

ax^2 + bx + c =0

So as we have:

2(x-3)^2 = -2x + 9

The first thing we should do is expand the expression and rearrange into standard form:

:. 2(x-3)(x-3) = -2x + 9
:. 2(x^2-3x-3x+9) = -2x + 9
:. 2x^2-12x+18 = -2x + 9
:. 2x^2-10x+9 = 0

We can now apply the quadratic formula:

x = (-(-10) +- sqrt( (-10)^2-4(2)(9)))/(2(2))
\ \ = (10 +- sqrt( 100-72))/(4)
\ \ = (10 +- sqrt( 28))/(4)
\ \ = (10 +- 2sqrt(7))/(4)
\ \ = 5/2 +- 1/2sqrt(7)