How do you verify 2cos(a+b)sin(a-b) = sin(2a) - sin(2b)2cos(a+b)sin(ab)=sin(2a)sin(2b)?

1 Answer

We know the identity

sin(A+B)=sinAcosB +cosA sinB.....(1)

Putting ,B = -B we have

sin(A-B)=sinAcosB -cosA sinB.....(2)

Subtracting (2) from (1) we get

sin(A+B)-sin(A-B)=2cosA sinB

=>2cosA sinB=sin(A+B)-sin(A-B)...........(3).

Now if A+B = 2a.......(4)

and A-B = 2b...........(5)

Adding (4) and (5)

2A=2(a+b) => A=(a+b)

Subtracting (5) from (4) we get

2B=2(a-b) =>B=(a-b)

Now inserting the values of A and B in (3) we get

2cos(a+b)sin(a-b)=sin((a+b)+(a-b))-sin((a+b)-(a-b))

2cos(a+b)sin(a-b)=sin(2a)-sin(2b)

Verified