How do you verify the identity cos((5pi)/4-x)=-sqrt2/2(cosx+sinx)?

1 Answer
Feb 6, 2017

Please see below.

Explanation:

We will use the identities cos(pi+theta)=-costheta and cos(A-B)=cosAcosB+sinAsinB

Hence, cos((5pi)/4-x)

= cos(pi+(pi/4-x))

= -cos(pi/4-x)

= -[cos(pi/4)cosx+sin(pi/4)sinx]

= -[sqrt2/2cosx+sqrt2/2sinx]

= -sqrt2/2(cosx+sinx)