How do you verify the identity (cos4x+cos2x)/(sin4x+sin2x)=cot3x?

1 Answer
Jan 2, 2017

Please see below.

Explanation:

We use the identities cosA+cosB=2cos((A+B)/2)cos((A-B)/2)

and sinA+sinB=2sin((A+B)/2)cos((A-B)/2)

Hence cos4x+cos2x=2cos((4x+2x)/2)cos((4x-2x)/2)

= 2cos3xcosx

and sin4x+sin2x=2sin((4x+2x)/2)cos((4x-2x)/2)

= 2sin3xcosx

Hence (cos4x+cos2x)/(sin4x+sin2x)=(2cos3xcosx)/(2sin3xcosx)=cot3x