How do you verify the identity (cost+cos3t)/(sin3t-sint)=cott?

1 Answer
Mar 8, 2017

See proof below

Explanation:

We use the sum to products formulae

cosa+cosb=1/2cos((a+b)/2)cos((a-b)/2)

sina-sinb=1/2sin((a-b)/2)cos((a+b)/2)

In our case

a=3t

and

b=t

Therefore,

LHS=(cos3t+cost)/(sin3t-sint)

=(1/2cos((3t+t)/2)cos((3t-t)/2))/(1/2sin((3t-t)/2)cos((3t+t)/2))

=(cancel(cos2t)cost)/(sintcancel(cos2t))

=cost/sint

=cott

=RHS

QED