How do you verify the identity sin(pi/6+x)=1/2(cosx+sqrt3sinx)?

2 Answers
Mar 31, 2017

See below.

Explanation:

We use the sin sum identity.

sin(\theta+\alpha)=sin(\theta)cos(alpha)+sin(alpha)cos(theta)

So, in this case, theta=pi/6 and alpha=x

sin(pi/6+x)=sin(pi/6)cos(x)+sin(x)cos(pi/6)

where sin(pi/6)=1/2 and cos(pi/6)=sqrt(3)/2

Plugging these back in,
sin(pi/6+x)=1/2cos(x)+sqrt(3)/2sin(x)

Taking out 1/2, we find that
sin(pi/6+x)=1/2(cosx+sqrt3sinx).

Mar 31, 2017

See proof below

Explanation:

We apply

sin(a+b)=sinacosb+sincosa

We need

sin(1/6pi)=1/2

cos(1/6pi)=sqrt3/2

Therefore,

LHS=sin(pi/6+x)

=sin(pi/6)cosx+cos(pi/6)sinx

=1/2cosx+sqrt3/2cosx

=1/2(cosx+sqrt3sinx)

=RHS

QED