How do you verify the identity sin(pi/6+x)+sin(pi/6-x)=cosxsin(π6+x)+sin(π6x)=cosx?

2 Answers
Feb 3, 2017

see explanation below

Explanation:

expand sin(A+B)=sinAcosA+sin BcosAsin(A+B)=sinAcosA+sinBcosA and,
sin(A-B)=sinAcosA-sin BcosAsin(AB)=sinAcosAsinBcosA

Therefore
sin(pi/6+x) + sin(pi/6-x) sin(π6+x)+sin(π6x) = sin(pi/6)cosx + cancel (sinx cos(pi/6))+ sin(pi/6)cosx - cancel (sinx cos(pi/6))

= 2 sin(pi/6)cosx, where sin(pi/6) =1/2

therefore,

= 2 sin(pi/6)cosx=2(1/2)cos x = cos x,

Feb 3, 2017

Explained below.

Explanation:

Expand the left hand side,

(sin (pi/6) cos x + cos (pi/6) sinx) +(sin (pi/6) cosx - cos (pi/6) sin x)

= 2 sin (pi/6) cos x

=2 (1/2)cos x

= cos x = right hand side