How do you verify the identity sin(x-y)=(1-cotxtany)/(cscxsecy)?

1 Answer
Dec 18, 2016

See proof below

Explanation:

We use

sin(A-B)=sinAcosB-sinBcosA

cotx=cosx/sinx

tany=siny/cosy

cscx=1/sinx

secy=1/cosy

The LHS is

sin(x-y)=sinxcosy-cosxsiny

The RHS is

(1-cotxtany)/(cscxsecy)

=(1-cosx/sinx*siny/cosy)/(1/sinx*1/cosy)

=(sinxcosy-cosxsiny)/(cancelsinxcancelcosy*1/(cancelsinxcancelcosy))

=sinxcosy-cosxsiny=sin(x-y)

=LHS

Q. E. D