How do you verify the identity sin(x+y)sin(x-y)=sin^2x-sin^2y?

1 Answer
Feb 17, 2017

Consider the trig identities:
sin (x + y) = sin x.cos y + sin y.cos x
sin (x - y) = sin x.cos y - sin y.cos x
Applying the algebraic identity: (a + b)(a - b) = a^2- b^2, their
product becomes:
P = sin (x + y).sin (x - y) = sin^2 x.cos^2 y - sin^2 y.cos^2 x
Replace cos^2 y by (1 - sin^2 y) and replace
cos^2 x by (1 - sin^2 x).
We get:
P = sin^2 x - sin^2 x.sin^2 y - sin^2 y + sin^2 y.sin^2 x
P = sin^2 x - sin^2 y