How do you verify the identity (sintheta+costheta)^2-1=sin2theta?

1 Answer
Dec 31, 2016

See proof below

Explanation:

We need

sin^2theta+cos^2theta=1

(a+b)^2=a^2+2ab+b^2

2sinthetacostheta=sin2theta

LHS is

(sintheta+costheta)^2-1

=sin^2theta+2sinthetacostheta+sin^2theta-1

=1+2sinthetacostheta-1

=2sinthetacostheta

=sin2theta

=RHS

QED