How do you verify the identity (sinx+siny)/(cosx-cosy)=-cot((x-y)/2)sinx+sinycosxcosy=cot(xy2)?

1 Answer
Jan 6, 2017

Please see below.

Explanation:

Using identities sinA+sinB=2sin((A+B)/2)cos((A-B)/2)sinA+sinB=2sin(A+B2)cos(AB2) and cosA-cosB=2sin((A+B)/2)sin((B-A)/2)cosAcosB=2sin(A+B2)sin(BA2), hence

(sinx+siny)/(cosx-cosy)sinx+sinycosxcosy

= (2sin((x+y)/2)cos((x-y)/2))/(2sin((x+y)/2)sin((y-x)/2))2sin(x+y2)cos(xy2)2sin(x+y2)sin(yx2)

= (cos((x-y)/2))/(sin((y-x)/2))cos(xy2)sin(yx2)

and as sin(-A)=-sinAsin(A)=sinA, we have sin((y-x)/2)=-sin((x-y)/2)sin(yx2)=sin(xy2)

Hence above becomes

(cos((x-y)/2))/(-sin((x-y)/2))=-cot((x-y)/2)cos(xy2)sin(xy2)=cot(xy2)