How do you verify the identity (sinx+-siny)/(cosx+cosy)=tan((x+-y)/2)?
1 Answer
We start with the trigonometric sum identities:
sinA+sinB = \ \ \ \ 2sin((A+B)/2)cos((A-B)/2)
sinA-sinB = \ \ \ \ 2cos((A+B)/2)sin((A-B)/2)
cosA+cosB = \ \ \ \ 2cos((A+B)/2)cos((A-B)/2)
cosA-cosB = -2sin((A+B)/2)sin((A-B)/2)
Consider the LHS (positive case):
(sinx+siny)/(cosx+cosy) = ( 2sin((A+B)/2)cos((A-B)/2) ) / ( 2cos((A+B)/2)cos((A-B)/2) )
" " = ( sin((A+B)/2) ) / ( cos((A+B)/2) )
" " = tan((A+B)/2)
Consider the LHS (negative case):
(sinx-siny)/(cosx+cosy) = ( 2cos((A+B)/2)sin((A-B)/2) ) / ( 2cos((A+B)/2)cos((A-B)/2) )
" " = ( sin((A-B)/2) ) / ( cos((A-B)/2) )
" " = tan((A-B)/2)
Hence, combining both cases, we have:
(sinx+-siny)/(cosx+cosy) = tan((A+-B)/2) \ \ \ \ QED