How do you verify the identity (sinx+-siny)/(cosx+cosy)=tan((x+-y)/2)?

1 Answer
Aug 18, 2017

We start with the trigonometric sum identities:

sinA+sinB = \ \ \ \ 2sin((A+B)/2)cos((A-B)/2)
sinA-sinB = \ \ \ \ 2cos((A+B)/2)sin((A-B)/2)
cosA+cosB = \ \ \ \ 2cos((A+B)/2)cos((A-B)/2)
cosA-cosB = -2sin((A+B)/2)sin((A-B)/2)

Consider the LHS (positive case):

(sinx+siny)/(cosx+cosy) = ( 2sin((A+B)/2)cos((A-B)/2) ) / ( 2cos((A+B)/2)cos((A-B)/2) )

" " = ( sin((A+B)/2) ) / ( cos((A+B)/2) )

" " = tan((A+B)/2)

Consider the LHS (negative case):

(sinx-siny)/(cosx+cosy) = ( 2cos((A+B)/2)sin((A-B)/2) ) / ( 2cos((A+B)/2)cos((A-B)/2) )

" " = ( sin((A-B)/2) ) / ( cos((A-B)/2) )

" " = tan((A-B)/2)

Hence, combining both cases, we have:

(sinx+-siny)/(cosx+cosy) = tan((A+-B)/2) \ \ \ \ QED