How do you verify the identity tan(x+45)=(1+tanx)/(1-tanx)?

2 Answers
Dec 17, 2016

We know that tantheta = sintheta/costheta, so:

sin(x + 45)/cos(x + 45) = (1 + sinx/cosx)/(1 - sinx/cosx)

We use the sum formulae sin(A + B) = sinAcosB + cosAsinB and cos(A + B) = cosAcosB - sinAsinB to expand.

(sinxcos(45) + cosxsin(45))/(cosxcos(45) - sinxsin(45)) = ((cosx + sinx)/cosx)/((cosx - sinx)/cosx)

(sinx(1/sqrt(2)) + cosx(1/sqrt(2)))/(cosx(1/sqrt(2)) - sinx(1/sqrt(2))) = (cosx + sinx)/(cosx) xx (cosx)/(cosx - sinx)

(1/sqrt2(sinx + cosx))/(1/sqrt(2)(cosx - sinx)) = (cosx + sinx)/(cosx - sinx)

(sinx + cosx)/(cosx- sinx) = (cosx+ sinx)/(cosx - sinx)

LHS = RHS

Identity proved!

Hopefully this helps!

Dec 17, 2016

Prove trig expression

Explanation:

Use the trig identity:
tan (a + b) = (tan a + tan b)/(1 - tan a.tan b
We get:
tan (x + 45) = (tan 45 + tan x)/(1 - tan x.tan 45)
Trig table --> tan 45 = 1
There for:
tan (x + 45) = (1 + tan x)/(1 - tan x)