How do you write # (2x^2 - 5x + 4) ^2 in standard form?

1 Answer
May 18, 2017

4x^4-20x^3-41x^2-40x+164x420x341x240x+16

Explanation:

color(blue)((2x^2-5x+4))color(green)((2x^2-5x+4))(2x25x+4)(2x25x+4)

Multiply everything inside the right bracket by everything in the left.

color(blue)(color(white)(-)2x^2)color(green)((2x^2-5x+4)) -> 4x^4-10x^3+8x^22x2(2x25x+4)4x410x3+8x2
color(white)(.)color(blue)(-5x)color(green)((2x^2-5x+4)) ->" "-10x^3+25x^2-20x.5x(2x25x+4) 10x3+25x220x
color(white)(..)color(blue)(+4)color(green)((2x^2-5x+4)) ->ul(" "+8x^2-20x+16)
" "4x^4-20x^3-41x^2-40x+16