How do you write a polynomial function of least degree given the zeros -5, #sqrt3#? Precalculus Complex Zeros Complex Conjugate Zeros 1 Answer Tazwar Sikder Oct 5, 2016 #f(x) = x^(2) - (sqrt(3) - 5) x - 5 sqrt(3)# Explanation: Let's express the function as #f(x) = (x + 5) (x - sqrt(3))#: #=> f(x) = (x + 5) (x - sqrt(3))# #=> f(x) = (x) (x) + (x) (- sqrt(3)) + (5) (x) + (5) (- sqrt(3))# #=> f(x) = x^(2) - sqrt(3) x + 5 x - 5 sqrt(3)# #=> f(x) = x^(2) - (sqrt(3) - 5) x - 5 sqrt(3)# Answer link Related questions What is a complex conjugate? How do I find a complex conjugate? What is the conjugate zeros theorem? How do I use the conjugate zeros theorem? What is the conjugate pair theorem? How do I find the complex conjugate of #10+6i#? How do I find the complex conjugate of #14+12i#? What is the complex conjugate for the number #7-3i#? What is the complex conjugate of #3i+4#? What is the complex conjugate of #a-bi#? See all questions in Complex Conjugate Zeros Impact of this question 1298 views around the world You can reuse this answer Creative Commons License