How do you write the expression 2^(1/6) in radical form?

2 Answers

root(6)2

Explanation:

When we're looking at an exponent that is a fraction, the top number is the "Nth" power (squared, cubed, etc) and the bottom number is the Nth root (square root, cube root, etc).

Our question has a 1 as the numerator, and so no special power. The denominator is a 6, so it's the 6th root. We write that as:

root(6)2

Oct 16, 2016

root(6)(2)

Explanation:

color(blue)(2^(1/6)

To convert it into the radical form, we use this

color(brown)(x)^(color(orange)(y)/color(violet)(z))=(root(color(violet)(z))(x))^color(orange)(y)

Then,

:.color(brown)(2)^(color(orange)(1)/color(violet)(6))=(root(color(violet)(6))(2))^color(orange)(1)

=color(blue)(root(6)(2)

Hope this answer helps!..