How do you write the partial fraction decomposition of the rational expression #(10x + 2)/ (x^3 - 5x^2 + x - 5)#?
1 Answer
#(10x+2)/(x^3-5x^2+x-5) = (-2x)/(x^2+1)+2/(x-5)#
#=-1/(x-i)-1/(x+i)+2/(x-5)#
Explanation:
First factor the denominator by grouping:
#x^3-5x^2+x-5#
#=(x^3-5x^2)+(x-5)#
#=x^2(x-5)+1(x-5)#
#=(x^2+1)(x-5)#
If we stick with Real coefficients for now, then these factors will be the denominators of the partial fraction decomposition.
So we want to solve:
#(10x+2)/(x^3-5x^2+x-5) = (Ax+B)/(x^2+1)+C/(x-5)#
#=((Ax+B)(x-5)+C(x^2+1))/(x^3-5x^2+x-5)#
#=((A+C)x^2+Bx+(C-5B))/(x^3-5x^2+x-5)#
Equating coefficients of
(i)
#A+C = 0# (ii)
#B-5A=10# (iii)
#C-5B=2#
Combining these using the recipe (i) - (iii) - 5(ii) we find:
#A+C-C+5B-5B+25A = 0-2-50 = -52#
So:
Hence:
and
So:
#(10x+2)/(x^3-5x^2+x-5) = (-2x)/(x^2+1)+2/(x-5)#
Next, if we allow Complex coefficients, then we can factor
#(-2x)/(x^2+1) = -1/(x-i) - 1/(x+i)#