Let ,
(4x^2+3)/(x-5)^3=A/(x-5)+B/(x-5)^2+C/(x-5)^3 ...tocolor(red)((M)
:.4x^2+3=A(x-5)^2+B(x-5)+C
:.4x^2+3=A(x^2-10x+25)+B(x-5)+C
:.4x^2+3=Ax^2-10Ax+25A+Bx-5B+C
:.4x^2+0*x+3=Ax^2+x(B-10A)+(25A-5B+C)
Comparing coefficients of x^2 ,x and free term,we get
color(blue)(A=4......................to(1)
B-10A=0.........,.to(2)
25A-5B+C=3..to(3)
Substitute color(blue)(A=4 into (2)
:.B-10(4)=0=>color(blue)(B=40
Again subst. A=4 and B=40 into (3)
:.25(4)-5(40)+C=3
:.C=3-100+200=>color(blue)(C=103
Hence, from color(red)((M)),we have
(4x^2+3)/(x-5)^3=color(blue)(4)/(x-5)+color(blue)(40)/(x-5)^2+color(blue)(103)/(x-5)^3