How do you write the partial fraction decomposition of the rational expression (4x^2+3)/((x-5)^3)4x2+3(x5)3?

1 Answer
Jul 31, 2018

(4x^2+3)/(x-5)^3=4/(x-5)+40/(x-5)^2+103/(x-5)^34x2+3(x5)3=4x5+40(x5)2+103(x5)3

Explanation:

Let ,

(4x^2+3)/(x-5)^3=A/(x-5)+B/(x-5)^2+C/(x-5)^3 ...tocolor(red)((M)

:.4x^2+3=A(x-5)^2+B(x-5)+C

:.4x^2+3=A(x^2-10x+25)+B(x-5)+C

:.4x^2+3=Ax^2-10Ax+25A+Bx-5B+C

:.4x^2+0*x+3=Ax^2+x(B-10A)+(25A-5B+C)

Comparing coefficients of x^2 ,x and free term,we get

color(blue)(A=4......................to(1)

B-10A=0.........,.to(2)

25A-5B+C=3..to(3)

Substitute color(blue)(A=4 into (2)

:.B-10(4)=0=>color(blue)(B=40

Again subst. A=4 and B=40 into (3)

:.25(4)-5(40)+C=3

:.C=3-100+200=>color(blue)(C=103

Hence, from color(red)((M)),we have

(4x^2+3)/(x-5)^3=color(blue)(4)/(x-5)+color(blue)(40)/(x-5)^2+color(blue)(103)/(x-5)^3