If A^T is invertible, is A invertible? What about A^TA?

1 Answer
Nov 7, 2015

Yes and yes

Explanation:

Suppose A^T has inverse (A^T)^(-1)

For any square matrices A and B, A^T B^T = (BA)^T

Then:

((A^T)^(-1))^T A = ((A^T)^(-1))^T (A^T)^T=(A^T (A^T)^(-1))^T = I^T = I

And:

A ((A^T)^(-1))^T = (A^T)^T ((A^T)^(-1))^T=((A^T)^(-1) A^T)^T = I^T = I

So ((A^T)^(-1))^T satisfies the definition of an inverse of A.

Then we find:

(A^T A) (A^-1 (A^T)^(-1)) = A^T (A A^-1) (A^T)^(-1)

=A^T I (A^T)^(-1) = A^T (A^T)^(-1) = I

And:

(A^-1 (A^T)^(-1)) (A^T A) = A^(-1)((A^T)^(-1) A^T)A

=A^(-1) I A = A^(-1)A = I

So (A^-1 (A^T)^(-1)) satisfies the definition of an inverse of A^T A