If k=64, how do you evaluate 1/2k^(2/3)+5(k^(1/2))^(2/3)?

1 Answer
Dec 9, 2016

28

Explanation:

Using the color(blue)"laws of exponents"

color(red)(bar(ul(|color(white)(2/2)color(black)(a^(m/n)=(root(n)(a))^m" and "(a^m)^n=a^(mxxn))color(white)(2/2)|)))

rArr1/2k^(2/3)+5(k^(1/2))^(2/3)

=1/2k^(2/3)+5k^(1/2xx2/3)

=1/2k^(2/3)+5k^(1/3)

[let k = 64]

=(1/2xx(root(3)(64))^2)+(5xxroot(3)(64))

=(1/2xx4^2)+(5xx4)

=8+20=28