If sinx=2/4sinx=24, how do you find cos2xcos2x? Trigonometry Trigonometric Identities and Equations Double Angle Identities 1 Answer Shwetank Mauria Jul 1, 2016 cos2x=1/2cos2x=12 Explanation: We have the identity cos2x=1-2sin^2xcos2x=1−2sin2x Hence as sinx=2/4sinx=24, cos2x=1-2sin^2x=1-2(2/4)^2cos2x=1−2sin2x=1−2(24)2 = 1-(2xx2xx2)/(4xx4)1−2×2×24×4 = 1-1/2=1/21−12=12 Answer link Related questions What are Double Angle Identities? How do you use a double angle identity to find the exact value of each expression? How do you use a double-angle identity to find the exact value of sin 120°? How do you use double angle identities to solve equations? How do you find all solutions for sin 2x = cos xsin2x=cosx for the interval [0,2pi][0,2π]? How do you find all solutions for 4sinthetacostheta=sqrt(3)4sinθcosθ=√3 for the interval [0,2pi][0,2π]? How do you simplify cosx(2sinx + cosx)-sin^2xcosx(2sinx+cosx)−sin2x? If tan x = 0.3tanx=0.3, then how do you find tan 2x? If sin x= 5/3sinx=53, what is the sin 2x equal to? How do you prove cos2A = 2cos^2 A - 1cos2A=2cos2A−1? See all questions in Double Angle Identities Impact of this question 9428 views around the world You can reuse this answer Creative Commons License