If y=1/2 sec^2x how we can prove that (d^2y)/dx^2=4y(3y-1) ?

1 Answer
Feb 19, 2018

See below

Explanation:

y = 1/2sec^2x

Use the chain rule to find dy/dx

d/dx[f(x)]^n=n[f(x)]^(n-1)f'(x)

d/dx(1/2sec^2x)=1/2 *2secx*secxtanx=sec^2xtanx

Now use the chain and product rules to find (d^2y)/dx^2

d/dxf(x)g(x)=g(x)f'(x)+f(x)g'(x)

d/dxsec^2xtanx=(d^2y)/dx^2 1/2sec^2x=2sec^2xtanxtanx+sec^2xsec^2x=2sec^2xtan^2x+sec^4x=sec^2x(2tan^2x+sec^2x)

Now use tan^2x=sec^2x-1 to yield the required result

sec^2x(2tan^2x+sec^2x)=sec^2x(2(sec^2x-1)+sec^2x)=sec^2x(2sec^2x-2+sec^2x)=sec^2x(3sec^2x-2)

Now substitute sec^2x=2y

sec^2x(3sec^2x-2)=2y(6y-2)
=4y(3y-1), as required. square