Integrate x3x2+4 using trig substitution?

1 Answer
Oct 11, 2017

See the explanatiom below

Explanation:

You have to change as follows

I=8(13u3u)

I=83(sec3θ3secθ)

=83(x2+12)323sec(arctan(x2))+C

It's easier without trigonometric substitution

Let u=x2+4, , du=2xdx

I=12(u4)duu

=12udu4udu

=(u3234u)

=13(x2+4)324x2+4

=(x28)3x2+4+C