Integrate #intx^3/sqrt(x^2+4)# using trig substitution?

1 Answer
Oct 11, 2017

See the explanatiom below

Explanation:

You have to change as follows

#I=8(1/3u^3-u)#

#I=8/3(sec^3theta-3sectheta)#

#=8/3(((x^2+1)/2)^(3/2)-3sec(arctan(x/2))+C#

It's easier without trigonometric substitution

Let #u=x^2+4#, #=>#, #du=2xdx#

#I=1/2int((u-4)du)/sqrtu#

#=1/2intsqrtudu-int4/sqrtudu#

#=(u^(3/2)/3-4sqrtu)#

#=1/3(x^2+4)^(3/2)-4sqrt(x^2+4)#

#=((x^2-8))/3sqrt(x^2+4)+C#