Integrate the following int sqrt(x^2+81) dx?

1 Answer
Feb 7, 2017

(xsqrt(x^2 + 81))/2 + 81/2ln|(x + sqrt(x^2 + 81))/9| + C

Explanation:

Use trig substitution. Let x= 9tantheta. Then dx = 9sec^2theta d theta.

=>intsqrt((9tantheta)^2 + 81) * 9sec^2theta d theta

=>intsqrt(81tan^2theta + 81) * 9sec^2theta d theta

=>intsqrt(81(tan^2theta +1)) * 9sec^2theta d theta

=>intsqrt(81sec^2theta) * 9sec^2theta d theta

=>int 9sectheta * 9sec^2theta d theta

=>int 81sec^3theta d theta

=>81int sec^3theta d theta

This is a relatively known integral. The proof can be found here.

=>81/2secthetatantheta+ 81/2ln|sectheta+ tantheta| + C

We know from our initial substitution that tantheta = x/9. This means the hypotenuse of the triangle would have a hypotenuse of sqrt(x^2 + 81).

=>81/2(sqrt(x^2 + 81)/9)(x/9) + 81/2ln|sqrt(x^2 + 81)/9 + x/9| + C

=>(xsqrt(x^2 + 81))/2 + 81/2ln|(x + sqrt(x^2 + 81))/9| + C

Hopefully this helps!